

Russisch - Deutscher Workshop Entwicklung der Zusammenarbeit zwischen Russland und Deutschland im Bereich alternativer Energien

Russia – Germany Cooperation in Alternative Energy

Lobachevsky Universität Nizhny Novgorod 21. September 2016

The German Energy Turnaround The Potential Role of Hydrogen in a Future Energy Supply System

Prof. Dr. Karl H. Klug Westfälische Hochschule Gelsenkirchen Westfälisches Energieinstitut

Distance Gelsenkirchen – Nizhny Novgorod

Straight Line: 2.444 km, Road: 2.729 km

© www.luftlinie.org

Gelsenkirchen in the Center of the industrial Heart of Germany – The Ruhr Area

Universities - Important Players in the Process of Structural Change

Westphalian University Gelsenkirchen – Short Profile

- Founded in 1992
- More than 9000 students (incl. 1000 international)
- **Bachelor's & Master's Degree Programmes in**
 - Engineering
 - **Computer Science**
 - **Natural Science**
 - **Business Management**
 - Law •
 - Journalism
- 12 Institutes

The Westphalian Energy Institute

- The **Westphalian Energy Institute** is a central research facility of the Westphalian University, which concentrates the university's energy competencies.
 - 4 Subdivisions:

The Potential Role of Hydrogen in a Future Energy Supply System

- **1. Transformation of the energy supply system and challenges**
- 2. Hydrogen as a potential problem solver \rightarrow Power-to-Gas
- 3. Power-to-Gas Projects in Germany (Selection)
- 4. Summary

We are witnesses and actors (?) of a fundamental transformation of our energy system, both in terms of energy supply as well as the way in which we use energy!

The Potential Role of Hydrogen in a Future Energy Supply System

- 1. Transformation of the energy supply system and challenges
- 2. Hydrogen as a potential problem solver \rightarrow Power-to-Gas
- 3. Power-to-Gas Projects in Germany (Selection)
- 4. Summary

Conventional Electrical Grid

Power Generating Capacity 1991: 126 GW (73 % Fossil; 19 % Nuclear; 7 % Water) Gross Power Production 1991: 549,9 TWh Gross Power Consumption 1991: 550,7 TWh

The Shape of Grids to come?

Gross Power Production 2015: 647,1 TWh

Gross Power Consumption 2015: 597,7 TWh

© The Economist; ABB (2004)

In 2011 the federal government of Germany decided the decommissioning for eight nuclear power plants and the entry into The Energy Turnaround.

Core objectives are:

- Gradual phase out of nuclear power by 2022.
- Reduction of primary energy consumption in 2050 by 50% compared to 2008.
- Increase the share of renewable energy by 2050
 - $_{\circ}$ in gross energy consumption from 10.8% (2011) to 60%,
 - $_{\circ}$ in electricity generation from 20% (2011) to at least 80%.

Development of Electricity Generation Capacity in Germany 1991 – 2014 (2050)^{1,2}

Challenges

Variable Consumption Households, Industry

Variable Generation Wind- and Solar Power

2050: 80 GW

2050: 25 - 250 GW

Interventions by network management to ensure grid stability

© www.netztransparenz.de 2016

Solution !Decoupling of production and consumption!

© HYCON 2016

The Potential Role of Hydrogen in a Future Energy Supply System

- 1. Transformation of the energy supply system and challenges
- 2. Hydrogen as a potential problem solver → Power-to-Gas
- 3. Power-to-Gas Projects in Germany (Selection)
- 4. Summary

- 1. Transformation of Electricity into H₂ "on availability".
- 2. H₂ Storage.
- 3. Re-Electrification of H₂ "on demand".

Buffer capacity for some minutes / hours (Goldisthal, Thüringen) Capacity 12 Mio. m³ water Power: 1060 MW (4 turbines) – turbine operation: 8 h \rightarrow 8.480 MWh_{el}

The Potential Role of Hydrogen in a Future Energy Supply System

- 1. Transformation of the energy supply system and challenges
- 2. Hydrogen as a potential problem solver \rightarrow Power-to-Gas
- 3. Power-to-Gas Projects in Germany (Selection)
- 4. Summary

Power-to-Gas – Projects in Germany

Quelle: DVGW 2016

E.ON PtG-Pilot-Project "Falkenhagen",

Hydrogen as Energy Storage – Reduction of Residual Loads

© HYCON 2016

Hydrogen as Energy Storage – Power to Gas (PtG)

Quelle: e.on AG

E.ON PtG-Pilot-Project "Falkenhagen", Electrolyzer

Westfälisches Energieinstitut

Key Data: Power Input: 2 MW_{el} H₂-Production: 360 m³/h (6 ELY-Systems a' 4 Stacks with 15 m³/h) Infeed into Natural Gas Transmission Grid

Audi e-gas Project

PtG: Coupling of energy and mobility sector

PtG: Coupling of energy and mobility sector

Audi e-gas Project

PtG: Audi e-gas Plant (Werlte / Emsland)

Hydrogen – Clean Fuel for Vehicles

PtG-Project "h2herten"

Integration of Renewables in Industry and Trade by the Help of Hydrogen

Provide a ideal and Carbon neutral working environment for Hydrogen Technology Companies by utilization of local Wind power for the production of Green Electricity and Green Hydrogen.

3000 m² office space and technical areas

Today Herten Hydrogen Application Centre

h2herten - Electricity Demand

Electricity Demand – Load Profile

Hydrogen Technology Centre: Electricity Demand: Maximum Power:

h2herten – Local Situation

Westfälisches Energieinstitut

Regenerative H2-Generation & Utilization

HECS → <u>Hydrogen</u> based <u>Energy</u> <u>Complementary</u> <u>System</u>

HECS - System Configuration

Westfälisches Energieinstitut

Electrolyzer 30 Nm³/h

Compressor 30 Nm³/h@50 bar

WEC 600 kW

PEM-FC 50 kW

Battery Bank 28 kWh

The Potential Role of Hydrogen in a Future Energy Supply System

- **1. Transformation of the energy supply system and challenges**
- 2. Hydrogen as a potential problem solver \rightarrow Power-to-Gas
- 3. Power-to-Gas Projects in Germany (Selection)
- 4. Summary

- The share of wind and solar power in energy supply will continue to grow strongly and it will lead to a much more decentralized energy system.
- Hydrogen can in addition to electricity taking the role of a secondary energy carrier with the advantage of better storability.
- The problems associated with an increasing proportion of wind- and solar-based power generators can reduced by combination with H2-energy systems and thus also their efficiency can be increased.
- Hydrogen technology has a wide range of possible applications with a high economic potential.

Kontakt: Karl H. Klug:

karl.klug@w-hs.de

Westfälische Hochschule Gelsenkirchen Westfälisches Energieinstitut Neidenburger Straße 43 Gelsenkirchen Germany www.w-hs.de